Expiratory automatic endotracheal tube compensation reduces dynamic hyperinflation in a physical lung model

نویسندگان

  • Christoph Haberthür
  • Annekathrin Mehlig
  • John F Stover
  • Stefan Schumann
  • Knut Möller
  • Hans-Joachim Priebe
  • Josef Guttmann
چکیده

INTRODUCTION The effect of expiratory endotracheal tube (ETT) resistance on dynamic lung inflation is unknown. We hypothesized that ETT resistance causes dynamic lung hyperinflation by impeding lung emptying. We further hypothesized that compensation for expiratory ETT resistance by automatic tube compensation (ATC) attenuates dynamic lung hyperinflation. METHODS A ventilator equipped with the original ATC mode and operating in a pressure-targeted mode was connected to a physical lung model that consists of four equally sized glass bottles filled with copper wool. Inspiratory pressure, peak expiratory flow, trapped lung volume and intrinsic positive end-expiratory pressure (PEEP) were assessed at combinations of four inner ETT diameters (7.0, 7.5, 8.0 and 8.5 mm), four respiratory rates (15, 20, 25 and 30/minute), three inspiratory pressures (3.0, 4.5 and 6.0 cmH2O) and four lung compliances (113, 86, 58 and 28 ml/cmH2O). Intrinsic PEEP was measured at the end of an expiratory hold manoeuvre. RESULTS At a given test lung compliance, inspiratory pressure and ETT size, increasing respiratory rates from 15 to 30/minutes had the following effects: inspiratory tidal volume and peak expiratory flow were decreased by means of 25% (range 0% to 51%) and 11% (8% to 12%), respectively; and trapped lung volume and intrinsic PEEP were increased by means of 25% (0% to 51%) and 26% (5% to 45%), respectively (all P < 0.025). At otherwise identical baseline conditions, introduction of expiratory ATC significantly attenuated (P < 0.025), by approximately 50%, the respiratory rate-dependent decreases in inspiratory tidal volume and the increases in trapped lung volume and intrinsic PEEP. CONCLUSIONS In a lung model of pressure-targeted ventilation, expiratory ETT resistance caused dynamic lung hyperinflation during increases in respiratory rates, thereby reducing inspiratory tidal volume. Expiratory ATC attenuated these adverse effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of automatic tube compensation in new-generation mechanical ventilators.

OBJECTIVE To compare performance of flow-adapted compensation of endotracheal tube resistance (automatic tube compensation, ATC) between the original ATC system and ATC systems incorporated in commercially available ventilators. DESIGN Bench study. SETTING University research laboratory. SUBJECTS The original ATC system, Dräger Evita 2 prototype, Dräger Evita 4, Puritan-Bennett 840. INT...

متن کامل

Pulmonary hyperinflation and ventilator-dependent patients.

Pulmonary hyperinflation is a major medical problem in patients with advanced chronic obstructive pulmonary disease (COPD) or acute asthma. The apparent beneficial effects of pulmonary hyperinflation on lung mechanics, such as an increased airway patency and lung elastic recoil, are by far overwhelmed by the deleterious effects on the pressure generating capacity of the respiratory muscles. Mor...

متن کامل

Commentary: Morrow B, Futter M, Argent A. (2006). Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients.

Endotracheal suctioning is performed regularly in ventilated infants and children to remove obstructive secretions. The effect of suctioning on respiratory mechanics is not known. This study aimed to determine the immediate effect of endotracheal suctioning on dynamic lung compliance, tidal volume, and airway resistance in mechanically-ventilated paediatric patients by means of a prospective ob...

متن کامل

"Intrinsic" PEEP (PEEPi): role of expiratory muscles.

In normal subjects breathing at rest, lung volume at end-expiration corresponds with the elastic equilibrium volume, or relaxation volume (Vr), of the respiratory system. If expiratory duration is not long enough, then inspiration may begin before the system has returned to Vr, such that end-expiratory lung volume is higher than Vr. This condition is named dynamic pulmonary hyperinflation and "...

متن کامل

Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease.

Expiratory flow limitation is the pathophysiologic hallmark of chronic obstructive pulmonary disease (COPD), but dyspnea (breathlessness) is its most prominent and distressing symptom. Acute dynamic lung hyperinflation, which refers to the temporary increase in operating lung volumes above their resting value, is a key mechanistic consequence of expiratory flow limitation, and has serious mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Critical Care

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009